Почти год представлены на рынке процессоры микроархитектуры Zen, на которую AMD возлагает большие надежды. Пять лет разработки должны были наконец-то вывести компанию из того положения, в котором она оказалась после выхода решений Intel семейства Core. Робкая попытка исправить ситуацию в далеком 2011 г. архитектурой Bulldozer так ни к чему и не привела — процессоры FX сильно зависели от программной поддержки: показывая отличную производительность в многопоточных приложениях, они сдавали позиции в однопоточных, т.е. в играх. Но, несмотря на очередную неудачу на процессорном фронте, чипмейкер решил не останавливаться и принялся за разработку совершенно новых решений.

В новинках обещали переработанный контроллер памяти и поддержку стандарта DDR4, увеличение удельной производительность каждого ядра, изменение технологии кластерной многопоточности (CMT) на одновременной многопоточности (SMT) — такие шаги должны были поднять скорость работы процессоров на 40% по сравнению с предшественниками. И фанаты с нетерпением стали ожидать очередного чуда. И, по правде говоря, их ожидания оправдались. Процессоры микроархитектуры Zen смогли занять практически все рыночные ниши, включая высокоуровневые и серверные сегменты, где позиции AMD давно пошатнулись. Это также не могло не сказаться на противостоянии с ее оппонентом, который в срочном порядке выпустил новое поколение CPU среднего уровня и расширил их модельный ряд, добавив шестиядерные продукты, чего прежде никогда не было.

Помимо хорошей производительности все без исключения процессоры Ryzen обладают разблокированным на повышение множителем, что делает их более привлекательными в глазах энтузиастов, чем некоторые конкурирующие решения Intel. Достаточно парой движений в прошивке материнской платы выбрать подходящий множитель и запустить чип на большей, чем номинальная, частоте, тем самым повысить быстродействие системы. Чтобы провернуть аналогичное с продукцией оппонента, необходимо выбирать определенные процессоры, относящиеся к серии «К», цены которых значительно выше простых решений, а выбор ограничен несколькими моделями. И здесь AMD явно вне конкуренции. Но вот так ли прост разгон Ryzen и что он даст на фоне продуктов противоположного лагеря, мы и попробуем выяснить в серии наших обзоров.

Модельный ряд

Итак, в модельном ряду доступных настольных CPU семейства Ryzen присутствует девять моделей: три серии Ryzen 7, четыре Ryzen 5 и две Ryzen 3. Старшие отличаются количеством ядер, которое составляет восемь штук с поддержкой многопоточности, средние обладают 4/6 ядрами, также с SMT, а младшая линейка довольствуется лишь четырьмя ядрами без возможности обрабатывать несколько потоков за такт. Кроме того, Ryzen 7 и старшие модели Ryzen 5 несут на борту 16 МБ кэш-памяти третьего уровня, тогда как остальные — всего 8 МБ.  Более подробные характеристики процессоров представлены в таблице:

Процессор Ryzen 7 1800X Ryzen 7 1700X Ryzen 7 1700 Ryzen 5 1600X Ryzen 5 1600 Ryzen 5 1500X Ryzen 5 1400 Ryzen 3 1300X Ryzen 3 1200
Ядро Summit Ridge Summit Ridge Summit Ridge Summit Ridge Summit Ridge Summit Ridge Summit Ridge Summit Ridge Summit Ridge
Разъём AM4 AM4 AM4 AM4 AM4 AM4 AM4 AM4 AM4
Техпроцесс, нм 14 14 14 14 14 14 14 14 14
Число ядер (потоков) 8 (16) 8 (16) 8 (16) 6 (12) 6 (12) 4 (8) 4 (8) 4 4
Номинальная частота, ГГц 3,6 3,4 3 3,6 3,2 3,5 3,2 3,5 3,1
Частота boost-режима, ГГц 4 3,8 3,7 4,0 3,6 3,7 3,4 3,7 3,4
Разблокированный на повышение множитель + + + + + + + + +
L1-кэш, Кбайт 8 x (32 + 64) 8 x (32 + 64) 8 x (32 + 64) 6 x (32 + 64) 6 x (32 + 64) 4 x (32 + 64) 4 x (32 + 64) 4 x (32 + 64) 4 x (32 + 64)
L2-кэш, Кбайт 8 x 512 8 x 512 8 x 512 6 x 512 6 x 512 4 x 512 4 x 512 4 x 512 4 x 512
L3-кэш, Мбайт 16 16 16 16 16 16 8 8 8
Поддерживаемая память DDR4-2667 DDR4-2400 DDR4-2667
DDR4-2400
DDR4-2667 DDR4-2400 DDR4-2667 DDR4-2400 DDR4-2667 DDR4-2400 DDR4-2667 DDR4-2400 DDR4-2667 DDR4-2400 DDR4-2667 DDR4-2400 DDR4-2667 DDR4-2400
Каналов памяти 2 2 2 2 2 2 2 2 2
TDP, Вт 95 95 65 95 65 65 65 65 65
Рекомендованная стоимость, $ 349* 309* 299 219* 189 174 169 129 109

*— без системы охлаждения

Мы проведем разгон процессоров Ryzen 7 1800X, Ryzen 5 1600, Ryzen 5 1400, Ryzen 3 1300X и Ryzen 3 1200 как представителей решений с различным количеством потоков, и сравним их между собой в плане производительности. А дополнит тест старичок в лице AMD FX-6100.

Тестовые стенды

  • операционная система: Windows 10 Pro x64 (10.0.16299.192);
  • драйверы: AMD APP SDK 3.0, AMD Chipset Drivers 17.30, GeForce 381.65 (22.21.13.8165), PhysX 9.17.0329.

Все обновления для ОС, доступные в Центре Обновления Windows, были инсталлированы. Сторонние антивирусные продукты не привлекались, тонкие настройки системы не производились, размер файла подкачки определялся системой самостоятельно.

В качестве тестов использовались следующие приложения:

  • AIDA64 5.95.4522 (Cache & Memory benchmark, BenchDLL 4.3.770-x64);
  • Super PI 1.5 XS;
  • wPrime 2.10;
  • x265 HD Benchmark;
  • MAXON CINEBENCH R15;
  • POV-Ray 3.7.0;
  • LuxMark v3.1;
  • Futuremark 3DMark 13 (2.4.4180);
  • DiRT 3 Complete Edition (1.2.0.0);
  • Hitman: Absolution (1.0.447.0).

Разгон Ryzen 7 1800X. Описание общей методики

Старшая модель семейства стала участницей нескольких наших сравнительных тестирований и в каждом из них она разгонялась. Однако вопрос о самой процедуре оверклокинга тогда затрагивался поверхностно, сегодня я хотел бы уделить ему больше внимания. К тому же, любой из процессоров на архитектуре Zen будет разгоняться по схожему принципу.

Мы использовали экземпляр с батчем UA 1705SUT (здесь и далее для сравнения приведен снимок процессора FX-6100):

Разгон Ryzen 7 1800X

Вначале вспомним, как ведёт себя представитель линейки Ryzen 7 с начальными настройками системы. В простое частота составляет 2,2 ГГц при напряжении меньше 0,5 В:

Разгон Ryzen 7 1800XРазгон Ryzen 7 1800XРазгон Ryzen 7 1800XРазгон Ryzen 7 1800X

Для старших материнских плат, где распаивается хаб X370, заготовлен особый режим работы ЦП, когда частота способна максимально повышаться за счёт технологии XFR, однако я наблюдал её в действии и на нашей тестовой MSI B350 Gaming Pro Carbon, использующей вовсе не X370, а B350. Нагрузка создавалась однопоточным Super PI 1.5 XS, при этом напряжение повышалось до 1,438 В (по данным датчика процессора, имеющем в AIDA64 название CPU VDD). Частота росла вплоть до 4,1 ГГц:

Разгон Ryzen 7 1800XРазгон Ryzen 7 1800X

При полноценной, многопоточной нагрузке она уже не была столь высока — рост останавливался на 3,7 ГГц, напряжение не превышало 1,219 В. Тестовой задачей был сценарий «1024M» из wPrime 2.10:

Разгон Ryzen 7 1800XРазгон Ryzen 7 1800X

Как видим, напряжения уровня 1,45 В заложено в схему работы самим производителем, потому во время разгона лёгкое превышение не должно существенно «навредить» процессору. Важный аспект, требующий внимания, — поведение стабилизатора напряжений на плате. Для нашей стендовой материнской платы есть отдельный обзор, где этот вопрос можно изучить детально, я лишь констатирую заметное снижение CPU VDD (согласно AIDA64) на фоне выставляемых в UEFI значений и формируемых на VRM самой платой. В этом случае критическим я буду воспринимать именно «полезное» напряжение, а не находящееся «на подступах» к процессору.

Разгон ЦП можно проводить не одним способом, однако для быстрого поиска частотных пределов вполне подойдёт фирменное ПО от AMD, названное Ryzen Master. На мой взгляд, уместным будет начать испытания с частоты 3700 МГц и напряжения 1,4 В. Для части пользователей даже такой уровень может казаться избыточным, тут каждый вправе сам принять решение, но сегодня, не прибегая к компромиссам, мы будем заниматься предельным разгоном (для воздушного типа охлаждения).

Разгон Ryzen 7 1800XРазгон Ryzen 7 1800X

Запуск wPrime 2.10 с профилем 1024M создавал нагрузку, как на сам процессор, так и на систему VRM у материнской платы. Шаг изменения частоты процессора — 25 МГц, достаточно небольшой. Наращивать итоговую частоту можно каждые несколько секунд, перемещаясь между ячейкой с новым значением и кнопкой «Применить». Относительно стабильной, для этого участка экспериментов, система будет считаться мной до тех пор, пока она сохраняет свою работоспособность. Как правило, сбой в её работе приводит к перезагрузке, потому нужно запоминать отметку (новую, когда тот произошёл, или старую, когда проблем ещё не было).

Разгон Ryzen 7 1800X

Для нашей платы также следует учитывать разницу между выставленным и действующим напряжением на процессоре, для стартового режима испытаний характерной была следующая картина: с максимальным LLC на VRM формировались 1,416 В, а до процессора доходило всего 1,356 В. Для NB я выбрал 0,9 В, это немного больше штатной отметки.

Разгон Ryzen 7 1800X

Полная нагрузка будет в том случае, если не забыть установить характерное используемому ЦП количество активных потоков в нагрузочной утилите:

Разгон Ryzen 7 1800X

Итак, когда найдена первая отметка, можно повысить напряжение и двигаться дальше. У нашего образца «стабильным» результатом первого цикла оказались 4,1 ГГц. Сделаем прибавку величиной 0,1 В, тем самым достигнув теоретических 1,5 В. Проверим, как система отреагировала на это повышение, запустив всё тот же wPrime. Видим, на VRM формируется 1,528 В, а для процессора действующими являются 1,45 В (я указываю максимальные отметки, как психологически важные в этой части замеров):

Разгон Ryzen 7 1800XРазгон Ryzen 7 1800X

Продолжаем, с возросшим питающим напряжением удалось продвинуться до 4150 МГц. Стоят ли 50 МГц того? Каждый пусть решает сам. Ради любопытства, я решил зайти ещё дальше, слегка превысив рубеж 1,5 В (для UEFI), добавив к ним ещё 0,025 В. Снова проверяем действующие уровни. Для стабилизатора он вырос до 1,552 В, а у процессора в распоряжении были лишь 1,475 В:

Разгон Ryzen 7 1800XРазгон Ryzen 7 1800X

Продолжая испытания, получилось зафиксировать работоспособность ПК с эффективной частотой ЦП 4,2 ГГц. Однако эта отметка является далеко не стабильной, а лишь отдушиной для любителей бенчмаркинга. Впрочем, частотный потенциал нашего экземпляра изучен, можно смело остановиться на частое 4,1 ГГц. Для облегчения восприятия информации, полученные цифры сведены в небольшую таблицу:

Модель Напряжение в UEFI, В CPU VDD (действующее), В Частота до сбоя wPrime, МГц
Ryzen 7 1800X 1,4 ≤ 1,356 4100
Ryzen 7 1800X 1,5 ≤ 1,45 4150
Ryzen 7 1800X 1,525 ≤ 1,475 4200

У нашего процессора не было проблем при испытаниях на частоте 4,1 ГГц и с напряжением 1,45 В, но это было при лёгкой нагрузке. Для закрепления, я привлёк более «тяжелое» — x265 HD Benchmark.

Разгон Ryzen 7 1800X

Непродолжительные испытания позволили мне снизить уровень до выставляемых в UEFI 1,4875 В, на CPU фиксируемой отметкой были 1,438 В. О перегреве ЦП даже с недорогим кулером пока речь не идёт, ведь температура не превысила и 80 градусов.

Разгон Ryzen 7 1800XРазгон Ryzen 7 1800X

Следующий этап — разгон оперативной памяти. Вопрос острый, как для платформы AM4, но сегодня — в наступившем 2018 году — уже практически все чипы (от всевозможных производителей) могут перешагнуть рубеж в 3000 МГц, впрочем, безусловным лидером рекомендаций является набор, содержащий микросхемы Samsung B-die. Для нашего теста комплект будет основан на более дешёвой и весьма распространённой ревизии E-die, он — двухранговый, что тоже считается уместным под CPU Ryzen. Сперва необходимо проверить работоспособность системы с профилем XMP, набор задержек определён изготовителем не зря, а частотная формула часто может быть работоспособной. Дальнейшее развитие событий имеет множество сценариев, но я опишу именно наш случай. Система вполне могла работать со схемой XMP при напряжении 1,35 В на модулях. Дальнейшие эксперименты (по повышению частоты) были весьма непростыми. Испытав все прошивки, имеющие отметки для DRAM больше, чем 3200 МГц (это только поздние версии UEFI, в ранних именно «3200» является максимальной), я остановился на UEFI 1.50. С ней наша память запускалась на 3333 МГц, но требовала стабилизации, тогда как с последней версией, на момент проведения испытаний (1.60), уже были проблемы даже с попаданием в среду UEFI. Напряжения на модулях не превышало 1,5 В, потому, быть может, именно это стало ограничивающим фактором (тут мы сталкиваемся с ещё одним психологическим барьером, но важно ещё то, что этот уровень — максимальный для используемой модели материнской платы). Итогом экспериментов с основной группой задержек стала следующая схема, которую мы использовали для всех процессоров Ryzen в этом обзоре (тут я подтверждаю её работоспособность для каждого процессора, принявшего участие в наших тестах):

Разгон Ryzen 7 1800X

Поиски частотных пределов памяти проходили с начальными настройками для процессора, а теперь пришло время их объединить, чтобы добиться максимально прироста быстродействия ПК. Высокая частота DRAM не замедлила сказаться на большей нагрузке процессора, потому его схему работы пришлось скорректировать, а именно частота снизилась до 4050 МГц при том же уровне напряжения. А ведь он исправно работал на 4,1 ГГц, но с медленной памятью.

Разгон Ryzen 7 1800X

Здесь мне пришлось немного слукавить, потому как все наши тестовые приложения работали без вопросов, но другие, специализирующиеся именно на выявлении нестабильностей в работе, могли рано или поздно заявить об ошибке в вычислениях. Именно потому в тестах материнских плат я использую частоту, равную 4025 МГц, где подобных проблем нет, но для сводного теста отметка 4050 МГц выглядит более солидной. Кроме того, разогнанная до 3333 МГц ОЗУ превращала этап «холодного старта» системы в настоящую рулетку: ПК мог включиться с первого раза, или со второго (двойной старт), с третьего, или даже сообщить об ошибках в настройках, тогда нужно было вновь загружать профиль с ними. Будет уместно хранить его не только в среде UEFI, а ещё где-нибудь на съёмном носителе. То есть, выбранный режим носит лёгкий налёт подхода бенчмаркинга, но, при остром желании, его можно было бы стабилизировать, выбрав большее действующее значение для ЦП и занявшись подстройкой второстепенных задержек у памяти. Всё будет зависеть от желаний владельца этой системы, мы же хотим разово собрать сведения о её быстродействии. Список изменений, внесённых в настройки UEFI, выглядел так:

Разгон Ryzen 7 1800XРазгон Ryzen 7 1800XРазгон Ryzen 7 1800XРазгон Ryzen 7 1800XРазгон Ryzen 7 1800XРазгон Ryzen 7 1800XРазгон Ryzen 7 1800X

Следует отметить, материнские платы MSI не позволяют корректировать Pstates, то есть частота процессора повышается для всех случаев эксплуатации ПК, поэтому использовать особые планы Электропитания в среде Windows не потребовалось. Также ведёт себя и напряжение, режим доступен всего один — точная фиксация значения, на других материнских платах вариантов может быть несколько.