Пока представлено пять номерных видеокарт AMD Radeon трехсотой серии. При этом компания пошла по стопам NVIDIA и выпустила отдельно топовый продукт без цифрового индекса со своим уникальным именем — AMD R9 Fury X. Именно этот «яростный» видеоадаптер стал вершиной графических технологий, используя новую архитектуру со сверхбыстрой памятью HBM и новый подход к организации охлаждения.
R9 Fury X вызывает самый большой интерес и заслуживает самого пристального внимания в новой линейке графических ускорителей AMD. После получения соответствующего образца для нашей лаборатории мы посвятим ему отдельный материал. Пока же сосредоточимся на более доступных решениях.
Основные технические характеристики объявленных новинок приведены в нижней таблице. И по ней отлично видно, что новинками их можно назвать с натяжкой.
Видеоадаптер | Radeon R9 Fury X | Radeon R9 390X | Radeon R9 390 | Radeon R9 380 | Radeon R7 370 | Radeon R7 360 |
Техпроцесс, нм | 28 | 28 | 28 | 28 | 28 | 28 |
Количество потоковых процессоров | 4096 | 2816 | 2560 | 1792 | 1024 | 768 |
Количество текстурных блоков | 256 | 176 | 160 | 112 | 64 | 48 |
Количество блоков рендеринга | 64 | 64 | 64 | 32 | 32 | 16 |
Частота ядра, МГц | до 1050 | до 1050 | до 1000 | до 970 | до 975 | до 1050 |
Шина памяти, бит | 4096 | 512 | 512 | 256 | 256 | 128 |
Тип памяти | HBM | GDDR5 | GDDR5 | GDDR5 | GDDR5 | GDDR5 |
Частота памяти, МГц | 1000 | 6000 | 6000 | 5500/5700 | 5600 | 6500 |
Объём памяти, МБ | 4096 | 8192 | 8192 | 2048/4096 | 2048/4096 | 2048 |
Поддерживаемые API | DirectX 12, Vulkan, Mantle | DirectX 12, Vulkan, Mantle | DirectX 12, Vulkan, Mantle | DirectX 12, Vulkan, Mantle | DirectX 12, Vulkan, Mantle | DirectX 12, Vulkan, Mantle |
Интерфейс | PCI-E 3.0 | PCI-E 3.0 | PCI-E 3.0 | PCI-E 3.0 | PCI-E 3.0 | PCI-E 3.0 |
Уровень TDP, Вт | 275 | 275 | 275 | 190 | 110 | 100 |
Все номерные Radeon являются вариациями уже знакомых графических карт со слегка измененными частотами. Radeon R9 390X и Radeon R9 390 — это разогнанные Radeon R9 290X и Radeon R9 290 на ядре Hawaii с увеличенным до 8 ГБ объемом видеопамяти.
Radeon R9 380 по всем характеристикам строго наследует Radeon R9 285, но с повышением частоты GPU.
Radeon R7 370 базируется на обновленной версии ядра Pitcairn и является ускоренной видеокартой Radeon R7 265, которая, напомним, была разогнанной версией Radeon HD 7850. То есть эта новинка использует «обрезанный» процессор. Модель с полным набором активных вычислительных блоков можно ожидать позже под именем Radeon R7 370X.
Radeon R7 360 тоже не несет ничего нового. Это Radeon R7 260 с повышенными частотами. Соответственно, более мощная модель Radeon R7 260X станет основой для Radeon R7 360X.
При повсеместном росте тактовых частот новые видеокарты сохранили TDP на уровне прежних решений, что особенно приятно в случае с горячими R9 390/390X. А Radeon R7 370 даже стал экономичнее своих предшественников на таком же GPU. Так что без доработок по питанию и изменений в схемотехнике плат не обошлось.
У современных графических карт частота ядра не фиксирована. Кроме разных значений для 2D- и 3D-режима используются разные технологии корректировки итоговой частоты в нагрузке при ограничениях по мощности и рабочих температурах. Если NVIDIA указывает базовую частоту и среднее значение Boost, то AMD поступает иначе — указанные частоты GPU являются максимальными. Если заявлена частота в 1000 МГц, то видеокарта будет работать на ней пока не превысит определенные лимиты. У Radeon все параметры регулируются технологией PowerTune, позволяющей добиться их оптимального сочетания. Практика использования видеокарт AMD прошлых поколений показывает, что в игровой нагрузке они легко работают на заявленных частотах, понижая их лишь в стрессовых режимах эксплуатации. Например, Radeon R9 290X/290 с референсным охлаждением теряли в производительности на стандартном охлаждении при долгой нагрузке. Автоматическая калибровка частоты в меньшую сторону позволяла избежать перегрева. У моделей с более мощным нереференсным охлаждением о понижении частот можно было забыть. У более простых Radeon эта проблема отсутствовала изначально.
Корректировка лимитов доступна любому пользователю через вкладку AMD Overdrive в Catalyst Control Center. Здесь же доступен разгон путем процентного изменения частоты ядра. Еще одна полезная функция — ограничение по максимальной скорости обдувающего вентилятора.
Вся эта функциональность знакома пользователям старых AMD Radeon. Теперь в программное обеспечение добавлена абсолютно новая возможность — ограничение максимального fps. Это позволит уменьшить нагрузку на видеокарту, если она выдает fps выше вашего комфортного уровня.
Такое ограничение по частоте кадров позволит снизить нагрев и шум, повысив комфорт в не особо требовательных 3D-приложениях. Думается, подобная функция будет весьма полезной для тех, кто много времени проводит за MOBA-играми, где производительности современных видеокарт хватает с избытком.
Virtual Super Resolution — еще одна новая функция Catalyst Control Center. В последнее время все большую популярность набирает сглаживание методом предварительного рендеринга картинки в увеличенном разрешении. Некоторые игры сами предлагают масштабирование изображения, NVIDIA для этих целей внедрила DSR. Теперь подобная технология есть и у AMD. Пользователи Radeon смогут задействовать разрешение 4K при мониторе Full HD. Это позволит добиться повышенной четкости деталей с минимизацией угловатых краев и «лесенок».
В массы идет технология AMD FreeSync, которая осуществляет синхронизацию выводимых кадров с частотой обновления монитора. Это позволяет устранить подергивания изображения и разрывы кадров.
Работает только с совместимыми мониторами, но при этом не требует наличия сложного аппаратного модуля, подобного NVIDIA G-Sync. Так что монитор для AMD FreeSync обойдется дешевле решений для конкурента.
Близится публичный релиз новой версии Windows, с которой увидит свет и новая версия графического API DirectX. Новые карты AMD (впрочем, как и их предшественники двухсотой серии) будут поддерживают DirectX 12. Среди улучшений этой версии ускоренная тесселяция и tiled resources для динамической подгрузки отдельных тайлов крупных виртуальных текстур. В DirectX 12 улучшено распараллеливание вычислений на многоядерных CPU, что позволит раскрыть потенциал процессоров AMD FX и добиться лучшей производительности от AMD APU.
Асинхронные шейдеры Async Shaders позволяют лучше использовать ресурсы GPU. Большая последовательная задача разбивается на несколько частей, чтобы сразу загрузить разные вычислительные блоки. Причем в GPU AMD последнего поколения уже имеются соответствующие блоки для ускоренной обработки этих шейдерных программ. В GPU Hawaii восемь блоков Asynchronous Compute Engines, что позволит раскрыть весь потенциал архитектуры GCN 1.2.
В DirectX 12 есть прямая поддержка мультичиповых конфигураций, упрощая доступ к аппаратным ресурсам для разработчиков. Возможен новый режим вывода изображения для конфигураций из нескольких видеокарт. В DirectX 11 использовался метод AFR, когда поочередно выводились кадры, обработанные каждым устройством. В DirectX 11 доступен Split-Frame Rendering (SFR), когда изображение делится на части, и каждая видеокарта обрабатывает свою половину кадра.
При AFR для рендеринга сцены видеокарты вынуждены хранить одинаковые данные в памяти. В DirectX 12 разработчикам доступен индивидуальный контроль над ресурсами каждого аппаратного устройства, что позволит по полной использовать всю доступную видеопамять.
Первой игрой, которая продемонстрирует преимущества нового API, будет Deus Ex: Mankind Divided. В этом же проекте нам обещают обновленную систему симуляции волос AMD TressFX 3.0.
Определенные преимущества архитектуры AMD GCN реализованы уже сейчас благодаря API Mantle. Этот программный интерфейс обеспечивает лучший доступ к прямым аппаратным возможностям GPU, позволяет снизить нагрузку на процессор и поднять общую производительность. Теперь к списку возможностей видеокарт AMD добавилась поддержка нового кроссплатформенного API Vulkan, который является развитием OpenGL и использует некоторые возможности Mantle.
Radeon R9 380
В центре внимания сегодняшнего обзора у нас окажется представитель среднего класса Radeon R9 380. Как уже было отмечено выше, это лишь обновленная версия Radeon R9 285. Основой предшественника был GPU Tonga — второй после Hawaii процессор на обновленной архитектуре GCN 1.2. Новый процессор получил название Antigua, на чем весь апгрейд и закончился. Но по факту это все равно самое прогрессивное архитектурное решение в среднем классе у AMD.
Не будем повторно приводить блок-схему знакомого GPU. Он состоит из четырех массивов обработки данных Shader Engine с 1792 потоковыми процессорами и 112 текстурными блоками при 32 ROP. Частота процессора повышена с 918 МГц до 970 МГц. Шина памяти 256 бит, эффективная частота модулей GDDR5 достигает 5500 МГц — тут никаких изменений относительно Radeon R9 285. Но заявлена еще версия на 4 ГБ видеопамяти с более высокой частотой — 5700 МГц.
Видеоадаптер Radeon R9 285 демонстрировал производительность на уровне 384-битного Radeon R9 280. Узкая шина и меньший объем памяти иногда заметно сдерживали потенциал Tonga, а где-то новая архитектура позволяла достичь даже более высоких результатов. Логично предположить, что Radeon R9 380 окажется еще ближе к решениям на базе GPU Tahiti. При этом TDP у новинки скромнее, следовательно, и шум в работе ниже.
Видеоадаптер | Radeon R9 280X | Radeon R9 280 | Radeon R9 380 | Radeon R9 285 |
Ядро | Tahiti | Tahiti | Antigua | Tonga |
Количество транзисторов, млн. шт | 4313 | 4313 | 5000 | 5000 |
Техпроцесс, нм | 28 | 28 | 28 | 28 |
Площадь ядра, кв. мм | 352 | 352 | 366 | 366 |
Количество потоковых процессоров | 2048 | 1792 | 1792 | 1792 |
Количество текстурных блоков | 128 | 112 | 112 | 112 |
Количество блоков рендеринга | 32 | 32 | 32 | 32 |
Частота ядра, МГц | до 1000 | до 933 | до 970 | до 918 |
Шина памяти, бит | 384 | 384 | 256 | 256 |
Тип памяти | GDDR5 | GDDR5 | GDDR5 | GDDR5 |
Частота памяти, МГц | 6000 | 5000 | 5500/5700 | 5500 |
Объём памяти, МБ | 3072 | 3072 | 2048/4096 | 2048 |
Поддерживаемая версия DirectX | 11.1 | 11.1 | 12 | 11.1 |
Интерфейс | PCI-E 3.0 | PCI-E 3.0 | PCI-E 3.0 | PCI-E 3.0 |
Уровень TDP, Вт | 250 | 250 | 190 | 190 |
Долгое время ходили слухи о появлении улучшенного 384-битного варианта Tonga. Если обратить внимание на размеры кристалла и количество транзисторов, то действительно можно предположить наличие незадекларированных блоков у GPU Tonga/Antigua. Хотя ничего подобного мы так и не увидели, не исключено, что Radeon R9 380X преподнесет сюрпризы и полностью отправит на пенсию старожилов на процессорах Tahiti.
Референсная видеокарта AMD Radeon R9 380 выполнена по типу закрытой «турбины».
Внешний дизайн довольно простой. Radeon R9 380 напоминает небольшой «кирпичик».
Мы же познакомимся с новинкой на примере нереференсной модели от ASUS, которая оснащена более мощным охлаждением и сразу предлагает повышенные рабочие частоты.